colda.algorithm package
Subpackages
- colda.algorithm.common_stage package
- colda.algorithm.metric package
- colda.algorithm.model package
- colda.algorithm.strategy package
- Subpackages
- Submodules
- colda.algorithm.strategy.abstract_algorithm_strategy module
- colda.algorithm.strategy.api module
- colda.algorithm.strategy.base module
- colda.algorithm.strategy.dp module
- colda.algorithm.strategy.test_algorithm module
- colda.algorithm.strategy.train_algorithm module
- colda.algorithm.strategy.utils module
- Module contents
- colda.algorithm.test_stage package
- colda.algorithm.train_stage package
Submodules
colda.algorithm.api module
colda.algorithm.base module
colda.algorithm.utils module
- colda.algorithm.utils.load(path, mode='pickle')
- colda.algorithm.utils.log(msg, root, self_id, task_id, test_id=None)
- colda.algorithm.utils.makedir_exist_ok(path)
- colda.algorithm.utils.parse_idx(idx)
- colda.algorithm.utils.save(input, path, mode='pickle')
- colda.algorithm.utils.softmax(X, theta=1.0, axis=None)
Compute the softmax of each element along an axis of X.
Parameters
X: ND-Array. Probably should be floats. theta (optional): float parameter, used as a multiplier
prior to exponentiation. Default = 1.0
- axis (optional): axis to compute values along. Default is the
first non-singleton axis.
Returns an array the same size as X. The result will sum to 1 along the specified axis.
Module contents
- colda.algorithm.log(msg, root, self_id, task_id, test_id=None)