colda.algorithm package

Subpackages

Submodules

colda.algorithm.api module

colda.algorithm.api.get_algo_log(user_id: str, task_id: str, log_category: str) list[str]

Return unique log determined by user_id, task_id and log_category

Parameters

user_id : str task_id : str log_category : str

Returns

list

colda.algorithm.api.get_all_algo_logs() dict[str, Any]

Return all logs

Returns

dict[str, Any]

colda.algorithm.base module

class colda.algorithm.base.BaseAlgorithm

Bases: object

Base class for algorithm

Methods

_store_log

final placeholder()

colda.algorithm.utils module

colda.algorithm.utils.load(path, mode='pickle')
colda.algorithm.utils.log(msg, root, self_id, task_id, test_id=None)
colda.algorithm.utils.makedir_exist_ok(path)
colda.algorithm.utils.parse_idx(idx)
colda.algorithm.utils.save(input, path, mode='pickle')
colda.algorithm.utils.softmax(X, theta=1.0, axis=None)

Compute the softmax of each element along an axis of X.

Parameters

X: ND-Array. Probably should be floats. theta (optional): float parameter, used as a multiplier

prior to exponentiation. Default = 1.0

axis (optional): axis to compute values along. Default is the

first non-singleton axis.

Returns an array the same size as X. The result will sum to 1 along the specified axis.

Module contents

colda.algorithm.log(msg, root, self_id, task_id, test_id=None)