colda.algorithm.train_stage package
Submodules
colda.algorithm.train_stage.api module
- class colda.algorithm.train_stage.api.MakeResidual
Bases:
BaseAlgorithm
Calculate Residual. Residual is used as target for the following training step.
Attributes
None
Methods
make_residual
- classmethod compute_residual(task_mode: Literal['classification', 'regression'], output: ndarray, target: ndarray) ndarray
Compute residual based on task mode, output and target
Parameters
task_mode : str target : list[str]
Returns
np.ndarray
- classmethod make_init(task_mode: Literal['classification', 'regression'], target: list[str]) ndarray
Create initial residual at round 1
Parameters
task_mode : str target : list[str]
Returns
np.ndarray
- classmethod make_residual(round: str, dataset_path: str, target_idx: str, skip_header: str, task_mode: Literal['classification', 'regression'], metric_name: Literal['MAD', 'RMSE', 'R2', 'Accuracy', 'F1', 'AUCROC'], sponsor_matched_identifers: dict[str, Any], last_round_result: None) ndarray
- classmethod make_residual(round: str, dataset_path: str, target_idx: str, skip_header: str, task_mode: Literal['classification', 'regression'], metric_name: Literal['MAD', 'RMSE', 'R2', 'Accuracy', 'F1', 'AUCROC'], sponsor_matched_identifers: dict[str, Any], last_round_result: Any) ndarray
Calculate Residual.
Parameters
round : str dataset_path : str target_idx : str skip_header : str task_mode : str metric_name : str sponsor_matched_identifers : dict[str, Any] last_round_result : Union[Any, None]=None
Returns
tuple[np.ndarray[Any], dict[str, Any]]
- class colda.algorithm.train_stage.api.MakeResult
Bases:
BaseAlgorithm
Combine the sponsor’s trained model and assistors’ trained models to a better sponsor model
Methods
make_result
- classmethod make_result(user_id: str, train_id: str, rounds, dataset_path, target_idx, skip_header, task_mode: Literal['classification', 'regression'], metric_name: Literal['MAD', 'RMSE', 'R2', 'Accuracy', 'F1', 'AUCROC'], sponsor_trained_cooperative_model_output, assistor_trained_cooperative_model_outputs, sponsor_matched_identifers, last_round_result) None
- classmethod result_func(alpha, task_mode, history, output, target) None
- class colda.algorithm.train_stage.api.MakeTrain
Bases:
BaseAlgorithm
Train the model
Methods
make_train
- classmethod make_train(dataset_path: str, data_idx: str, skip_header: int, task_mode: Literal['classification', 'regression'], model_name: Literal['linear', 'decision_tree', 'svm', 'gradient_boosting', 'mlp'], cur_round_residual: Any, role: Literal['sponsor', 'assistor'], matched_identifier: Any | None = None) tuple[Any, numpy.ndarray]
- class colda.algorithm.train_stage.api.MakeTrainLocal
Bases:
BaseAlgorithm
Sponsor train model locally(only use its dataset) and get its performance
Methods
make_train_local
- classmethod make_train_local(root: str, self_id: str, task_id: str, dataset_path: str, data_idx: str, target_idx: str, skip_header: str, task_mode: Literal['classification', 'regression'], model_name: Literal['linear', 'decision_tree', 'svm', 'gradient_boosting', 'mlp'], metric_name: Literal['MAD', 'RMSE', 'R2', 'Accuracy', 'F1', 'AUCROC']) None
colda.algorithm.train_stage.make_residual module
- class colda.algorithm.train_stage.make_residual.MakeResidual
Bases:
BaseAlgorithm
Calculate Residual. Residual is used as target for the following training step.
Attributes
None
Methods
make_residual
- classmethod compute_residual(task_mode: Literal['classification', 'regression'], output: ndarray, target: ndarray) ndarray
Compute residual based on task mode, output and target
Parameters
task_mode : str target : list[str]
Returns
np.ndarray
- classmethod make_init(task_mode: Literal['classification', 'regression'], target: list[str]) ndarray
Create initial residual at round 1
Parameters
task_mode : str target : list[str]
Returns
np.ndarray
- classmethod make_residual(round: str, dataset_path: str, target_idx: str, skip_header: str, task_mode: Literal['classification', 'regression'], metric_name: Literal['MAD', 'RMSE', 'R2', 'Accuracy', 'F1', 'AUCROC'], sponsor_matched_identifers: dict[str, Any], last_round_result: None) ndarray
- classmethod make_residual(round: str, dataset_path: str, target_idx: str, skip_header: str, task_mode: Literal['classification', 'regression'], metric_name: Literal['MAD', 'RMSE', 'R2', 'Accuracy', 'F1', 'AUCROC'], sponsor_matched_identifers: dict[str, Any], last_round_result: Any) ndarray
Calculate Residual.
Parameters
round : str dataset_path : str target_idx : str skip_header : str task_mode : str metric_name : str sponsor_matched_identifers : dict[str, Any] last_round_result : Union[Any, None]=None
Returns
tuple[np.ndarray[Any], dict[str, Any]]
colda.algorithm.train_stage.make_result module
- class colda.algorithm.train_stage.make_result.MakeResult
Bases:
BaseAlgorithm
Combine the sponsor’s trained model and assistors’ trained models to a better sponsor model
Methods
make_result
- classmethod make_result(user_id: str, train_id: str, rounds, dataset_path, target_idx, skip_header, task_mode: Literal['classification', 'regression'], metric_name: Literal['MAD', 'RMSE', 'R2', 'Accuracy', 'F1', 'AUCROC'], sponsor_trained_cooperative_model_output, assistor_trained_cooperative_model_outputs, sponsor_matched_identifers, last_round_result) None
- classmethod result_func(alpha, task_mode, history, output, target) None
colda.algorithm.train_stage.make_train module
- class colda.algorithm.train_stage.make_train.MakeTrain
Bases:
BaseAlgorithm
Train the model
Methods
make_train
- classmethod make_train(dataset_path: str, data_idx: str, skip_header: int, task_mode: Literal['classification', 'regression'], model_name: Literal['linear', 'decision_tree', 'svm', 'gradient_boosting', 'mlp'], cur_round_residual: Any, role: Literal['sponsor', 'assistor'], matched_identifier: Any | None = None) tuple[Any, numpy.ndarray]
colda.algorithm.train_stage.make_train_local module
- class colda.algorithm.train_stage.make_train_local.MakeTrainLocal
Bases:
BaseAlgorithm
Sponsor train model locally(only use its dataset) and get its performance
Methods
make_train_local
- classmethod make_train_local(root: str, self_id: str, task_id: str, dataset_path: str, data_idx: str, target_idx: str, skip_header: str, task_mode: Literal['classification', 'regression'], model_name: Literal['linear', 'decision_tree', 'svm', 'gradient_boosting', 'mlp'], metric_name: Literal['MAD', 'RMSE', 'R2', 'Accuracy', 'F1', 'AUCROC']) None