colda.workflow package
Subpackages
- colda.workflow.test_workflow package
- colda.workflow.train_workflow package
- Subpackages
- colda.workflow.train_workflow.assistor package
- colda.workflow.train_workflow.sponsor package
- Submodules
- colda.workflow.train_workflow.sponsor.api module
- colda.workflow.train_workflow.sponsor.find_assistor module
- colda.workflow.train_workflow.sponsor.match_identifier module
- colda.workflow.train_workflow.sponsor.output module
- colda.workflow.train_workflow.sponsor.situation module
- Module contents
- Submodules
- colda.workflow.train_workflow.stop module
- colda.workflow.train_workflow.train_base module
- Module contents
- Subpackages
Submodules
colda.workflow.abstract_workflow module
- class colda.workflow.abstract_workflow.AbstractTestMainWorkflow
Bases:
ABC
Abstract class for test main workflow
- abstract find_test_assistor(**kwargs)
- abstract classmethod get_instance()
- abstract test_assistor_match_identifier(**kwargs)
- abstract test_assistor_request(**kwargs)
- abstract test_match_identifier(**kwargs)
- abstract test_output(**kwargs)
- abstract test_sponsor_match_identifier(**kwargs)
- class colda.workflow.abstract_workflow.AbstractTrainMainWorkflow
Bases:
ABC
Abstract class for train main workflow
- abstract find_assistor(**kwargs)
- abstract classmethod get_instance()
- abstract stop_train(**kwargs)
- abstract train_assistor_match_identifier(**kwargs)
- abstract train_assistor_request(**kwargs)
- abstract train_assistor_situation(**kwargs)
- abstract train_match_identifier(**kwargs)
- abstract train_output(**kwargs)
- abstract train_situation(**kwargs)
- abstract train_sponsor_match_identifier(**kwargs)
- abstract train_sponsor_situation(**kwargs)
colda.workflow.api module
- class colda.workflow.api.TestMainWorkflow
Bases:
AbstractTestMainWorkflow
Manage test workflow
Methods
get_instance find_test_assistor test_assistor_request test_match_identifier test_sponsor_match_identifier test_assistor_match_identifier test_output
- classmethod find_test_assistor(train_id: str, test_file_path: str, test_id_column: str, test_data_column: str, test_target_column: str, test_name: str | None = None, test_description: str | None = None) str
Start testing with all assistors of the previous train task
Parameters
train_id : str test_file_path : str test_id_column : str test_data_column : str test_target_column : str test_name : str=None test_description : str=None
Returns
Any
- classmethod get_class() type[workflow.test_main_workflow.TestMainWorkflow]
Get current class.
Returns
type[TestMainWorkflow]
- classmethod test_assistor_match_identifier(test_id: str, test_id_dict: dict[str, str]) bool
Match_identifier is second stage of testing for assistor. In this stage, assistor would:
Match the identifiers sent from the sponsor
Test the trained models produced at each round of training stage using test data
Send the test ouputs to sponsor
Parameters
test_id : str test_id_dicts : dict[str, str]
Returns
None
- classmethod test_assistor_request(test_id_dicts: dict[dict[str, str]]) None
Request is fist stage of testing for assistor. In this stage, assistor would:
Encrypt the identifiers
Send the identifiers to server
Parameters
test_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod test_match_identifier(test_id_dicts: dict[dict[str, str]]) None
Handle the unread_test_match_identifier. Two situations needed to be considered: sponsor and assistor
Parameters
test_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod test_output(test_id_dicts: dict[dict[str, str]]) None
Output is third stage of testing for sponsor. In this stage, sponsor would:
Get the test outputs sent from all the assistors
Evaluate test results
Parameters
test_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod test_sponsor_match_identifier(test_id: str, test_id_dict: dict[str, str]) None
Match_identifier is second stage of testing for sponsor. In this stage, sponsor would:
Match the identifiers sent from all the assistors
Test the trained models produced at each round of training stage
Parameters
test_id : str test_id_dicts : dict[str, str]
Returns
None
- class colda.workflow.api.TrainMainWorkflow
Bases:
AbstractTrainMainWorkflow
Manage train workflow
Methods
get_instance find_test_assistor test_assistor_request test_match_identifier test_sponsor_match_identifier test_assistor_match_identifier test_output
- classmethod find_assistor(max_round: int, assistors: list, task_mode: Literal['classification', 'regression'], model_name: Literal['linear', 'decision_tree', 'svm', 'gradient_boosting', 'mlp'], metric_name: Literal['MAD', 'RMSE', 'R2', 'Accuracy', 'F1', 'AUCROC'], train_file_path: str, train_id_column: str, train_data_column: str, train_target_column: str, task_name: str | None = None, task_description: str | None = None) str
Start training
Parameters
maxRound : int assistors : list task_mode : Task_Mode model_name : Model_Name metric_name : Metric_Name train_file_path : str train_id_column : str train_data_column : str train_target_column : str task_name : str=None task_description : str=None
Returns
Any
- classmethod get_class() type[workflow.train_main_workflow.TrainMainWorkflow]
Get current class.
Returns
type[TrainMainWorkflow]
- classmethod stop_train(unread_train_stop_notification: dict)
Stop Train and delete related files. Implement later
- classmethod train_assistor_match_identifier(train_id: str, train_id_dict: dict[str, str]) None
Match_identifier is second stage of training for assistor. In this stage, assistor would:
Match the identifiers sent from all the assistors
Parameters
train_id : str train_id_dict : dict
Returns
None
- classmethod train_assistor_request(train_id_dicts: dict[dict[str, str]]) None
Request is fist stage of training for assistor. In this stage, assistor would:
Encrypt the identifiers
Send the identifiers to server
Parameters
train_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod train_assistor_situation(train_id: str, train_id_dict: dict) None
situation is third stage of training for assistor. In this stage, assistor would:
Get the residual(training target) sent from the sponsor
Train model
Send trained model output to sponsor
Parameters
train_id : str train_id_dicts : dict
Returns
None
- classmethod train_match_identifier(train_id_dicts: dict[dict[str, str]]) None
Handle the unread_test_match_identifier. Two situations needed to be considered: sponsor and assistor
Parameters
test_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod train_output(train_id_dicts: dict[dict[str, str]]) None
Output is fourth stage of testing for sponsor. In this stage, sponsor would:
Get the train outputs sent from all the assistors
Evaluate train results
Parameters
train_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod train_situation(train_id_dicts: dict[dict[str, str]]) None
Handle the unread_train_situation. Two situations needed to be considered: sponsor and assistor
Parameters
train_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod train_sponsor_match_identifier(train_id: str, train_id_dict: dict[str, str]) None
Match_identifier is second stage of training for sponsor. In this stage, sponsor would:
Match the identifiers sent from all the assistors
Calculate residual(training target)
Send residual to all assistors
Parameters
train_id : str train_id_dicts : dict
Returns
None
colda.workflow.base module
colda.workflow.test_main_workflow module
- class colda.workflow.test_main_workflow.TestMainWorkflow
Bases:
AbstractTestMainWorkflow
Manage test workflow
Methods
get_instance find_test_assistor test_assistor_request test_match_identifier test_sponsor_match_identifier test_assistor_match_identifier test_output
- classmethod find_test_assistor(train_id: str, test_file_path: str, test_id_column: str, test_data_column: str, test_target_column: str, test_name: str | None = None, test_description: str | None = None) str
Start testing with all assistors of the previous train task
Parameters
train_id : str test_file_path : str test_id_column : str test_data_column : str test_target_column : str test_name : str=None test_description : str=None
Returns
Any
- classmethod get_class() type[colda.workflow.test_main_workflow.TestMainWorkflow]
Get current class.
Returns
type[TestMainWorkflow]
- classmethod test_assistor_match_identifier(test_id: str, test_id_dict: dict[str, str]) bool
Match_identifier is second stage of testing for assistor. In this stage, assistor would:
Match the identifiers sent from the sponsor
Test the trained models produced at each round of training stage using test data
Send the test ouputs to sponsor
Parameters
test_id : str test_id_dicts : dict[str, str]
Returns
None
- classmethod test_assistor_request(test_id_dicts: dict[dict[str, str]]) None
Request is fist stage of testing for assistor. In this stage, assistor would:
Encrypt the identifiers
Send the identifiers to server
Parameters
test_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod test_match_identifier(test_id_dicts: dict[dict[str, str]]) None
Handle the unread_test_match_identifier. Two situations needed to be considered: sponsor and assistor
Parameters
test_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod test_output(test_id_dicts: dict[dict[str, str]]) None
Output is third stage of testing for sponsor. In this stage, sponsor would:
Get the test outputs sent from all the assistors
Evaluate test results
Parameters
test_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod test_sponsor_match_identifier(test_id: str, test_id_dict: dict[str, str]) None
Match_identifier is second stage of testing for sponsor. In this stage, sponsor would:
Match the identifiers sent from all the assistors
Test the trained models produced at each round of training stage
Parameters
test_id : str test_id_dicts : dict[str, str]
Returns
None
colda.workflow.train_main_workflow module
- class colda.workflow.train_main_workflow.TrainMainWorkflow
Bases:
AbstractTrainMainWorkflow
Manage train workflow
Methods
get_instance find_test_assistor test_assistor_request test_match_identifier test_sponsor_match_identifier test_assistor_match_identifier test_output
- classmethod find_assistor(max_round: int, assistors: list, task_mode: Literal['classification', 'regression'], model_name: Literal['linear', 'decision_tree', 'svm', 'gradient_boosting', 'mlp'], metric_name: Literal['MAD', 'RMSE', 'R2', 'Accuracy', 'F1', 'AUCROC'], train_file_path: str, train_id_column: str, train_data_column: str, train_target_column: str, task_name: str | None = None, task_description: str | None = None) str
Start training
Parameters
maxRound : int assistors : list task_mode : Task_Mode model_name : Model_Name metric_name : Metric_Name train_file_path : str train_id_column : str train_data_column : str train_target_column : str task_name : str=None task_description : str=None
Returns
Any
- classmethod get_class() type[colda.workflow.train_main_workflow.TrainMainWorkflow]
Get current class.
Returns
type[TrainMainWorkflow]
- classmethod stop_train(unread_train_stop_notification: dict)
Stop Train and delete related files. Implement later
- classmethod train_assistor_match_identifier(train_id: str, train_id_dict: dict[str, str]) None
Match_identifier is second stage of training for assistor. In this stage, assistor would:
Match the identifiers sent from all the assistors
Parameters
train_id : str train_id_dict : dict
Returns
None
- classmethod train_assistor_request(train_id_dicts: dict[dict[str, str]]) None
Request is fist stage of training for assistor. In this stage, assistor would:
Encrypt the identifiers
Send the identifiers to server
Parameters
train_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod train_assistor_situation(train_id: str, train_id_dict: dict) None
situation is third stage of training for assistor. In this stage, assistor would:
Get the residual(training target) sent from the sponsor
Train model
Send trained model output to sponsor
Parameters
train_id : str train_id_dicts : dict
Returns
None
- classmethod train_match_identifier(train_id_dicts: dict[dict[str, str]]) None
Handle the unread_test_match_identifier. Two situations needed to be considered: sponsor and assistor
Parameters
test_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod train_output(train_id_dicts: dict[dict[str, str]]) None
Output is fourth stage of testing for sponsor. In this stage, sponsor would:
Get the train outputs sent from all the assistors
Evaluate train results
Parameters
train_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod train_situation(train_id_dicts: dict[dict[str, str]]) None
Handle the unread_train_situation. Two situations needed to be considered: sponsor and assistor
Parameters
train_id_dicts : dict[dict[str, str]]
Returns
None
- classmethod train_sponsor_match_identifier(train_id: str, train_id_dict: dict[str, str]) None
Match_identifier is second stage of training for sponsor. In this stage, sponsor would:
Match the identifiers sent from all the assistors
Calculate residual(training target)
Send residual to all assistors
Parameters
train_id : str train_id_dicts : dict
Returns
None
colda.workflow.utils module
- class colda.workflow.utils.CheckSponsor
Bases:
object
- assistor: Final[str] = 'assistor'
- sponsor: Final[str] = 'sponsor'
- colda.workflow.utils.check_Algorithm_return_value(check_list, first_val, second_val)
- Parameters:
first_val – String. The first val needs to check.
second_val – String. The second val needs to check.
- Returns:
Boolean
- Raises:
OSError – Placeholder.
- colda.workflow.utils.handle_Algorithm_return_value(name, return_val, first_val, second_val)
Check if the return value returned by the Algorithm equals to the correct value, e.x. return_val[0] == first_val (‘200’), return_val[1] == second_val (‘make_train’)
- Parameters:
name – String. The name of current return_val
return_val – String. Contains the status code, name, paths that are returned by Algorithm
first_val – String. The first value needs to be checked
second_val – String. The second value needs to be checked
- Returns:
return_val that has been split
- Raises:
OSError – Placeholder.
- colda.workflow.utils.is_max_round_valid(max_round: int) bool
- colda.workflow.utils.load_file(file_address)
start task with all assistors
- Parameters:
file_address – Integer. Maximum training round
file_content – List. The List of assistors’ usernames
- Returns:
Tuple. Contains a string ‘handleTrainRequest successfully’ and the task id
- Raises:
OSError – Placeholder.
- colda.workflow.utils.obtain_notification_information(notification_dict: dict[str, Any], test_indicator: str = 'train') tuple[str, str, int] | tuple[str, str, int, str]
Parse the notification dict
Parameters
notification_dict : dict[str, Any] test_indicator : str
Returns
tuple[str]
- colda.workflow.utils.save_file(file_address, file_content)
start task with all assistors
- Parameters:
file_address – Integer. Maximum training round
file_content – List. The List of assistors’ usernames
- Returns:
Tuple. Contains a string ‘handleTrainRequest successfully’ and the task id
- Raises:
OSError – Placeholder.