colda.algorithm.model package
Submodules
colda.algorithm.model.api module
- class colda.algorithm.model.api.Model(task_mode: Literal['classification', 'regression'], model_name: Literal['linear', 'decision_tree', 'svm', 'gradient_boosting', 'mlp'])
Bases:
BaseModel
- fit(data, target) None
- make_model(task_mode: Literal['classification', 'regression'], model_name: Literal['linear', 'decision_tree', 'svm', 'gradient_boosting', 'mlp']) object
- predict(data, target=None) None
colda.algorithm.model.base module
colda.algorithm.model.models module
- class colda.algorithm.model.models.Model(task_mode: Literal['classification', 'regression'], model_name: Literal['linear', 'decision_tree', 'svm', 'gradient_boosting', 'mlp'])
Bases:
BaseModel
- fit(data, target) None
- make_model(task_mode: Literal['classification', 'regression'], model_name: Literal['linear', 'decision_tree', 'svm', 'gradient_boosting', 'mlp']) object
- predict(data, target=None) None
colda.algorithm.model.models_prev module
colda.algorithm.model.my_model module
- class colda.algorithm.model.my_model.LSTMModel(num_sensors, hidden_units)
Bases:
Module
- fit(train_loader, epochs=10, lr=0.1)
- forward(x)
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- lstm_predict(test_dataloader)
- training: bool
- class colda.algorithm.model.my_model.SequenceDataset(sequence_length, dataframe_x, dataframe_y=None)
Bases:
Dataset
- colda.algorithm.model.my_model.SequenceDataset_handeler(dataset, target_dataset=None)